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Several aspects of the use of digital computers to  generate solutions of equations of 
interest to fluid mechanics are discussed. The inter-disciplinary nature of the field 
of computational fluid dynamics (CFD) is emphasized : the dependence on strides in 
computer technology, the impact of advances in algorithm development, the 
continuous interaction with laboratory experiment and analytical theory. The 
particular role of that mode of computer usage usually referred to as the numerical 
experiment is highlighted. ‘Experiments’ of this type have played a central role 
in establishing concepts such as the soliton and the strange attractor as paradigms 
within fluid mechanics. The ambitious goal of providing digital counterparts to 
laboratory equipment such as the wind tunnel is considered. The possibility of 
abandoning the Eulerian representation of flow fields in favour of following swarms 
of Lagrangian particles on a computer is stressed. Issues arising from and results of 
using this methodology are reviewed. Computer simulations are contrasted with 
computer generated animation. The paper concludes with speculations on future 
developments. 

1. Introduction 
A hallmark of the ‘scientific method’ that we all espouse is the interdependence 

of analytical theory on one hand and laboratory experimentation and observation 
on the other. Theory a t  odds with (sufficiently careful) experiment and observation 
does not survive long regardless of internal, formal elegance. The introduction of 
experiment, attributable in large measure to Galileo, was a decisive epistemological 
advance from the pure contemplation of Aristotelian natural philosophy. 

There are a t  least two reasons for bringing up this almost commonplace issue here. 
One is that many of the papers of G. I. Taylor mirror perfectly this counterpoint of 
theory and experiment of the scientific method. In  an era of increasing specialization, 
where the common theorist is ill a t  ease in a laboratory and the common experimenter 
is often numbed by the formal mathematical jargon of his theorist colleagues, 
Taylor’s papers provide a refreshing reminder that deep insight can frequently be 
stated in simple terms, and thus lends itself to simple experiments and simple 
theoretical explanation. I n  the best case both of these can be carried through by one 
individual. 

A second reason for dwelling on the philosophy of the scientific method is that  the 
duo of analysis and experiment is slowly but surely evolving into a trio of analysis, 
computation and experiment. The device responsible for this permeating change in 
the way we do science (as well as many other aspects of our society) is the digital 
computer. Computation asserts its independent stature as a worthy principal of the 
triumvirate particularly in that mode of inquiry designated the numerical experi- 
ment. As the name indicates this is an investigation that is closely allied with the 
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experimental probing typical of the laboratory, yet the substance that is probed and 
the methods used are the ethereal ones of theory. 

Computational fluid dynamics, often abbreviated CFD, is a young subject in the 
sense that its more substantial implementatioris belong to generations following 
G. I .  Taylor’s. It is an ancient subject in the sense that the dream of rapid calculation 
goes back to the origins of scientific thought. It is a mature subject in the sense that 
many of the methods still in use originated when calculating machines were very 
much more primitive than they are today. 

The methods of realizing rapid calculators have shifted with the technologies 
available, and the present prominence of digital calculation throughout much of the 
exact sciences owes its debt to  breakthroughs in electronics, that  promise to have 
as great an  impact on society as a whole as, for example, the steam engine and its 
attendant ‘industrial revolution ’. 

This paper is intended to survey the progress and status of computation as i t  
relates to  fluid mechanics. This young field, however, already has an enormous 
literature. Indeed, quality periodicals catering exclusively to computational method- 
ology in science, such as the Journal of Computational Physics and SIAM Journal 
of Scienti$c and Statistical Computing, have appeared. Scores of review articles and 
monographs could be cited. To get a quick overview of the variety in methodology 
and approach within CFD the reader might consult the articles by Emmons (1970), 
Orszag & Israeli (1974), Patterson (1978), Zabusky (1981), Jameson (1983), Rogallo 
& Moin (1984), Van Dyke (1984), and Leonard (1985). It follows that I can provide 
a t  best a spotty and personal view of the subject. 

Furthermore, CFD is an interdisciplinary field, where the next advance on any 
particular problem is just as likely to  come from a numerical analyst or a computer 
scientist as from a fluid mechanician. CFD shares with laboratory experimentation 
a dependence on machinery, and since hardly any ‘numerical experimenters ’ build 
their own equipment nowadays, the decisions and plans of major computer manu- 
facturers influence the field. Most CFD practitioners do construct their own computer 
codes, but frequently well-defined, general, mathematical tasks are performed by 
special purpose ‘packages ’, written by individuals that  the computational fluid 
dynamicist may never know. Hence, the availability (commercial or otherwise) of 
specific quality software for specific machines can be an important factor. 

I shall not attempt, nor would it be appropriate, to cover all these issues. I n  $2 
there is a brief survey of rather standard material on the evolution of computer 
hardware and the corresponding scale of fluid mechanical calculations. I n  $3 I 
attempt to differentiate modes of usage of computers in fluid mechanics. I argue that 
there are hierarchies of computation : function evaluation, steady-state calculation, 
initial-value calculation, symbol manipulation, etc. My own preferences are for the 
category of initial-value problems, which seem to come closest to the laboratory 
experiment counterpart, and so I briefly discuss in $3 examples of discoveries that  
have been made in this particular mode. The paradigms of integrable behaviour in 
a system with infinitely many degrees of freedom, associated with solitons, and 
chaotic behaviour in systems with just a few degrees of freedom, are highlighted. I n  
$4 my topic is the algorithm, the set of rules to be effected in generating a numerical 
flow solution. This again is a topic that can easily take up several book volumes (as 
indeed i t  has in the study by Knuth 1973), and so after some general remarks I 
proceed with unconcealed bias towards my own research interests in Lagrangian 
vortex methods. I n  $5 I comment on the relation between numerical flow simulation, 
on one hand, and computer generated animation, on the other. Finally, $6 discusses 
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the outlook for computational studies in fluid mechanics including the excitement 
generated by new developments in computer architecture, the enhanced availability 
of computing resources, and the impact computers will have on instruction and 
self-study. 

Will more sophisticated computing equipment generate deeper insight Z My 
assessment is that i t  will, but so many examples from G. I. Taylor’s opus show us 
that elaborate facilities are not a necessary condition for profound advances. 

2. On the evolution of computing machines 
The desire to  calculate quickly and accurately goes back to the origins of 

arithmetic. Indeed, the word ‘ calculate ’ derives from the Latin calculare, meaning 
a small stone used for reckoning. The post Second World War era is, however, the 
first to have computing machinery on such a scale that discoveries in science can be 
(and have been) made that probably would not have happened otherwise. To 
understand this development a brief reminder of the highlights in the evolution of 
computing machines may be in order. More thorough discussions can be found in 
standard references such as the Encyclopcedia Britannica. Metropolis, Howlett & Rota 
(1980) contains many enlightening articles on this topic. 

Simple mechanical devices such as the abacus and the calculating machine are still 
in use today although they have been superseded by electronic calculators. Eminent 
scientists of the seventeenth and eighteenth century, Pascal and Leibniz in partic- 
ular, contributed to the design of mechanical calculators. Leibniz wrote on this topic. 
He envisioned calculators being used for the computation of tables in astronomy. The 
tedious nature of computing by hand is stressed by Leibniz in his 1685 manuscript 
Machina arithmetica, which contains the opinion: ‘For it is unworthy of excellent 
men to lose hours like slaves in the labour of calculation, which could be safely 
relegated to anyone else if the machine were used. ’ 

The calculators of Pascal and Leibniz and many of their modern electronic 
counterparts demand active participation of the operator. During the nineteenth 
century several important developments took place that we now recognize as seminal 
to the modern computer: the ideas and ‘Analytical Engine’ models of Charles 
Babbage (c .  1830), the symbolic logic developed by George Boole (1815-1864), and 
the introduction of punched cards with data and instructions by Joseph-Marie 
Jacquard and Herman Hollerith. 

The Mark I capable of just 5 flops (an acronym for floating point operations per 
second) was built in 1944 by Aiken and engineers from International Business 
Machines Corporation. The ENIAC, the first all-purpose, all-electronic digital 
computer built by Eckert and Mauchly, capable of 5000 flops appeared a few years 
later. A seminal 1947 study by Goldstine and von Neumann is usually credited with 
introducing the idea of the stored program, although similar notions had appeared 
in the work of Zuse and Turing (see the interesting contribution by Knuth & Pardo 
in Metropolis et al. 1980). 

One can argue that the main ideas for the modern computer were in place by 1950. 
The further phenomenal developments in speed and performance are primarily due 
to breakthroughs in electronics such as the invention of the transistor in 1948 and 
the introduction of the integrated circuit in the late 1960s. In  the 1980s we find 
ourselves with what is often referred to as the ‘fourth generation’ of computer 
hardware consisting of a plethora of versatile microcomputers a t  the low end of the 
performance spectrum and a select group of ‘supercomputers’ a t  the high end. Peak 
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performances approach lo9 flops or 1 Gigaflop. Typical semilog graphs of computer 
power (measured in flops) versus time (measured in years) with data points that 
correspond to computing machines introduced by various manufacturers show 
exponential growth of computational speed with time. 

It would seem that a Megaflop machine holds a tremendous amount of computing 
power. To get a feel for this number one can consider the solution of a partial 
differential equation of the type encountered in fluid mechanics using a spatial mesh 
that contains N nodes. At each node we need the value of the field in question, 8 say, 
at least one number for a scalar field but usually more. To compute a local derivative 
in terms of spatial derivatives we require a fixed number of floating point operations 
associated with each node: some differencing to get spatial derivatives, some 
multiplications, normalizations etc. This number scales at least as N .  Thus, the 
number of operations per timestep must be expected to grow a t  least as quickly as 
N .  In  three dimensions N = n3, where n is the one-dimensional resolution. Hence, 
n = 100 is entirely feasible and, indeed, well-resolved computations of smooth, 
laminar three-dimensional flows are entirely within the realm of possibility. 

Additional problems arise, however, when we consider flows that have a 
hierarchy of scales, in particular turbulent flows. Here, as is well known, the ratio 
of the largest to the smallest scale that is ‘excited’ depends strongly on Reynolds 
number. According to Kolmogorov’s 1941 theory (cf. Landau & Lifshiftz 1959, $32) 
the range of excited scales grows as (Re/Re,)f where Re, is the Reynolds number 
corresponding to transition from laminar to turbulent flow. The total number of mesh 
points, N ,  grows as the cube of this, so that N = N,(Re/Re,):, where No is the 
required mesh size for Re = Re,. Again when chosing the timestep and the total 
integration time the hierarchy of scales enters: the total integration time to follow 
a reasonable period of evolution, T ,  of the flow is set by the large scales. The time 
step, T ,  is set by the rapidly evolving small scales. The number of steps taken in the 
calculation, T/r ,  is given by turbulence scaling as (Re/ReTjf. Hence, the overall 
operation count scales as (Re/Re,)3 (Orszag 1970). 

Estimates of this type show that the accessible range of Reynolds numbers is tied 
to computer hardware performance levels. The required spatial resolution, given by 
the number of mesh nodes N ,  increases with Reynolds number as does the necessary 
total run time of the simulation. The operation count per timestep increases with 
N .  (This increase is method dependent but must be a t  least O ( N ) . )  Hence, the 
requirements for a computer to generate solutions to the Navier-Stokes equations 
increase dramatically with Reynolds number. The ‘digital wind tunnel ’, dream of the 
aircraft designer, is still in the future as far as fully resolved turbulence calculations 
with realistic geometries go. 

However, turbulence is not everything, and so apart from developing strategies 
to ameliorate the scaling just described, one can pursue other problems in fluid 
mechanics for which the powers of present computers are quite adequate but which, 
nevertheless, still defy analytical methods. 

3. Modi operandi 
The tables of special functions, that we today take for granted, were not readily 

available a century or two ago. In  principle such tables can be worked out from 
various expansion and approximation formulae. In practice the computational effort 
involved can be quite large. This evaluation of specific numbers from specific formulae 
to a specified accuracy is the most basic mode of numerical work. I shall refer to it 
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as function evaluation. The format of a problem in this category is that  one has some 
closed form expression to be evaluated as an independent variable takes on a 
succession of values. The elucidation of a dispersion relation arising from a linearized 
stability analysis or the evaluation of functions given by integral representations are 
examples of numerical computations in this mode. Frequent>ly the results of a 
function evaluation are known in qualitative terms, maybe even with a few 
asymptotic results, and the main purpose of the work is to  refine the numerical 
accuracy in a quantitative description. 

Much of the numerical work that comes under the heading of function evaluation 
does not have the exploratory character that  one would demand of a ‘numerical 
experiment ’. However, once we begin solving systems of nonlinear equations, such 
as t>hose that may arise in calculating the equilibrium of a simple dynamical system, 
the analytical structure is frequently so rich, and the solutions obtained so varied 
and often unexpected, that a genuine sense of search and discovery prevails. In  this 
case the programmed computer does indeed take on a role similar to that of the 
laboratory apparatus. 

Let me elaborate on just one example of fluid mechanical significance: the 
equations of motion for a system of parallel line vortices, established by Helmholtz, 
are 

I have used a not>ation in which each vortex is represented by it>s point of intersection 
wit’h an orthogonal, complex =-plane, the circulations of the vortices are denoted by 
Ts ,  and the asterisk denotes complex conjugation. (Because of this representation of 
the vortices by points, they are usually referred to as point vortices.) 

The dynamics described by ( 1 )  is considered in several references (see Aref 1983, 
1985 for review). For now I want to focus on steady st,ates of an assembly of point 
vortices. This problem arises, for example, in the hydrodynamics of superfluid 4He. 
It turns out that  vortices in this fluid take the form of concentrated line filaments, 
and quantum mechanics then demands that each vortex has a circulation r = h/m, 
where h is Planck’s constant and m is the mass of a 4He atom (Onsager 1949). 
Laboratory experiments have succeeded in visualizing states with patterns of several 
such identical vortices in solid-body rotation (Yarmchuk, Gordon & Packard 1979). 
In  principle this allows the fundamental natural constant h/m to be determined from 
macroscopic quantities characterizing a hydrodynamic, steady flow situation ! 

The analytical problem is to solve a system of coupled, nonlinear, algebraic 
equations of the form 

N i  

where A is the parameter 

Here r is the common circulation of the identical point vortices and R is the angular 
frequency of rotation of the pattern. Standard numerical methods exist for solving 
such systems of equations. 

This problem occupied William Thomson (Lord Kelvin) when he was attempting 
a theory of atoms based on vortex dynamics. He referred to the subject (which 
extended to three dimensions a t  the hands of P. G. Tait led to the initiation of 
the theory of knots), as vortex statics. In  spite of the name there is much dynamical 



20 H .  Aref 

0 
(a) 0 0 (b) 0 0 

0 0 0 
0 0 0 0  

0 0 

0 
0 0 0 0 0 

0 0 0 0  

0 0  

0 0  

0 

........................................ 0 ....... ......... 0 .......................... 0 ......... 0 ........ 
0 

FIGURE 1. Steadily rotating point vortex patterns as found by Campbell & Ziff (1978) through 
numerical solution of (2). In  (a )  and ( b )  the partitions of 1% vortices into rings have commensurate 
parts (3 + 3  +6  for a,  4 + 8 for b) ,  and the rotational symmetry is exact. In (c) and (d )  the partitions 
have incommensurate parts (1 1 = 2 + 9 in c ,  3 + 8 in d )  and the symmetry is reduced to a reflection 
symmetry in the axis shown. (These statements are conjectures based on an examination of the 
‘Los Alamos Catalog’.) 

information to be gained from such states. It is interesting to note that although this 
problem has been known for many years, the only configurations found and studied 
analytically in two dimensions have been very simple, symmetrical ones : identical 
vortices arranged in a regular polygon with or without a central vortex were 
considered by J. J. Thomson in 1883 and by T. H. Havelock in 1931. A curious 
special case discovered by Stieltjes (see Calogero 1978) has the vortices all on a line 
a t  positions given by the roots of the Nth Hermite polynomial. 

A detailed investigation partly analytical and partly numerical of the stability of 
the ‘vortex polygons’ was performed by Morikawa & Swenson (1971), but only 
recently has a full-scale search for steady states been launched. Campbell & Ziff 
(1978) produced their ‘ Los Alamos Catalog’ of stable patterns, claimed to be complete 
f o r N =  1, ..., 30. 

The general impression of these patterns is that  the vortices are arranged on 
concentric circles. This is indeed the case when the number of vortices can be 
partitioned into a sum of commensurate integers. For example, 12 = 4 + 8 = 3 + 3 + 6 
and stable configurations exist with vortices on either two or three concentric circles 
(see figure l a ,  b ;  these configurations are labelled 12, and 12, by Campbell & Ziff 
1978). For 11 vortices, however, one finds states that  look like two-circle configura- 
tions corresponding to the partitions 11 = 3 + 8  and 11 = 2 + 9  (see figure l c ,  d ) .  
Closer scrutiny reveals that these configurations do not have rotational symmetry 
at all. I n  fact, both have an axis of symmetry, shown dotted in figure 1 (c ,  d) .  

Two intriguing numerical discoveries have thus been made: one is that  a pattern 
of vortices rotating as a rigid body need not have circular symmetry. The other is 
a tantalizing hint of a deep connection with the theory of partitions. Many details 
of the numerical results, however, remain without comprehensive theoretical 
understanding. 

To conclude this brief discussion of a particular kind of steady-state calculation 
I quote a little known result of Tkachenko (1964) that, hopefully, will whet the 
readers’ appetite : consider the point vortex configuration in figure 2 (a ) .  It has three 
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FIGURE 2. Point vortex 'equilibria', i.e. completely stationary configurations of point vortices. In 
(a) a simple case with just four vortices, three of one sign (+),  one opposite (0). In (6) a more 
complicated case with 64 vortices (36 of one sign, 28 of the other) found recently by Campbell and 
Kadtke (1986) using a method suggested by work of Tkachenko (1964). 

identical vortices a t  the vertices of an equilateral triangle with a vortex of opposite 
strength a t  the centre. It is easily verified that this configuration is completely 
stationary, i.e. the velocity of each component vortex vanishes. Tkachenko considers 
the generalization of this result. Consider a pattern with N ,  = $n(n+ 1) point vortices 
of circulation + r, N- = in(.- 1 )  of circulation -r, for integer n. Let the positions 
of the positive vortices, z,, a = 1, ..., N,,  in the complex plane be the roots of a 

N +  
polynomial 

P(2) = rI (z-2,). (4a) 
a = l  

Similarly, let the positions of the negative vortices, i& p = 1 ,  . . . , N - ,  be the roots 
of a polynomial 

N 

Then Q and P satisfy the ordinary differential equation 

Q P +  PQ" = 2 P Q ' ,  
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where the primes denote differentiation with respect to z .  A derivation of this result 
(different from that given by Tkachenko 1964) appears in the Appendix. Tkachenko 
considered the solution analytically for the first four pairs of ‘magic numbers’ 
{N+,  N- }  = {1,0}, (3, l}, {S, 3) and {lo, 6}. A single stationary point vortex is the 
lowest-order solution in this scheme. The next one is the configuration in figure 2 (a ) .  

Recently, Campbell & Kadtke ( 1986) have generalized Tkachenko’s results to 
higher n using computer algebra to solve for the hierarchy of coefficients arising from 
the polynomial equation (5), and then finding the roots in a conventional way, e.g. 
using Newton’s method. They have also generalized the approach to configurations 
with more than two species of point vortices. They find one-parameter families of 
completely stationary configurations. Figure 2 ( b )  provides just one example, a 
configuration with 36 vortices of one circulation, 28 of the opposite circulation. 

We come next to  the solution of an ordinary differential equation (ODE). One ODE 
discretized in some fashion will yield a system of coupled algebraic equations. Many 
of the ‘special functions’ found in tables satisfy ODEs, but frequently one has other 
information about them that is better to use for tabulation. For some of the functions 
of interest to fluid mechanics, however, all we have is an ODE. Typically this equation 
arises from making a similarity solution ansatz in the partial differential equation 
(PDE) provided by fluid mechanics. Usually these solutions are associated with 
steady flow, or at least with flows where the time dependence enters via a similarity 
variable. I shall refer to this mode of computation as steady state calculation. I have 
in mind the determination of functions such as the Blasius boundary-layer profile and 
its offspring, the similarity solutions of Falkner and Skan, the similarity flow between 
rotating disks of von Karman, etc. We find in much of the early computational work 
precision calculations of the key functions involved in such solutions : Hartree’s 
(1937) work on the boundary-layer equations, Cochran’s (1934) evaluation of the von 
Iiarman similarity solution, and so on. 

Numerous computations in this vein have been performed to  determine shapes of 
steadily rotating or translating vortices, steadily propagating bubbles, uniformly 
propagating waves, etc. Solutions of essentially analytical precision can be obtained, 
yet the closed form expression in terms of known functions remains beyond our grasp. 
The steady -state solutions can be supplemented by a linearized stability analysis 
(again performed numerically) to give some hints regarding dynamical behaviour. A 
full comprehension of dynamics must, however, await an initial-value calculation. 

I n  terms of numerical methodology there is not much of a step from integrating 
an ODE to performing an initial-value calculation for a PDE, which when discretized 
in some fashion (see 3 4) yields a system of coupled ODEs. And i t  is in this mode that 
two seminal discoveries were made, both of which illustrate the numerical experiment 
a t  its best: the discovery of solitons in the solutions of certain PDEs (Zabusky & 
Iiruskal1965), and the discovery of the phase space structure now known as a strange 
attractor in a small system of coupled ODEs (Lorenz 1963). 

I stress that  both these discoveries arose from numerical initial-value calculations. 
This is the mode of computation that most closely parallels the laboratory experi- 
ment. The experimenter prepares a set-up that appears to be of interest. Then the 
flow is set in motion and relevant results and diagnostics are gathered. 

The discovery of solitons and a flavour of the interplay between numerical 
calculations and analytical theory has been reviewed recently by Zabusky (1981). 
Some sense of the exchanges between numerical experiment and theory in connection 
with the concept of the strange attractor and other aspects of chaotic behaviour in 
nonlinear dynamics may be gained from the articles by Ford (1978) and Feigenbaum 
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(1980). The interactions on this topic between theory and computation on one hand, 
and laboratory experiment on the other, are still unfolding in the literature. 

There is little need for me to reiterate much of this material here, but a couple of 
comments may be in order: i t  is worth noting that both discoveries were made with 
computing equipment that by today’s standards is primitive, and that both 
investigations used numerical techniques that one would label as conventional. 
Adequate facilities for the graphical display of solutions as they unfolded and a work 
environment in which yesterday’s calculation could influence tomorrow’s calculation 
appear as important ingredients for success. These are logistical matters familiar to 
any laboratory experimenter, but whereas the laboratory experimenter usually 
controls his own equipment, the numerical experimenter must often run his experi- 
ments on equipment set up and maintained by someone else. The commonly used 
term ‘computer facility’ conjures up an image of something that is easy to interact 
with and use. However, as most practitioners will know, making a computer system 
easy to use for a heterogeneous user community is a very difficult task, and only after 
considerable resources have been expended and much experience gained does the 
result approximate the desires. 

The other comment is that although one would expect something quantitative with 
many-digit accuracy as the logical outcome of a numerical experiment, these two 
discoveries, that  have since become paradigms for much of modern science, are 
primarily discoveries of qualitative features. I am not suggesting that the calcula- 
tions were inaccurate, although they undoubtedly were less accurate than some 
subsequent verifications. But the main lesson learned was on the qualitative 
behaviour of differential equations. 

This is a common feature of numerical experiments in fluid mechanics. The 
equations have a solution space that is so rich and varied that almost any realization 
of a solution, be it analog or digital, is bound to turn up something of interest. The 
immediate challenge, of course, is to discover features that are common to several 
realizations. This leads naturally to  a desire to perform parameter studies, long 
sequences of essentially identical calculations using slightly altered initial configura- 
tions and/or control parameters. As computer resources become more abundant 
any single computation ceases to be an entity worth reporting. It is the collection 
of several computations covering some range of parameters that  is becoming the 
entity of interest. 

The computer is an almost ideal instrument for this kind of survey. Once a 
computer code has been written and debugged? it has few useful functions but to 
be run again and again with slightly altered input data each time. Similar statements 
can be made, I assume, about a piece of laboratory equipment such as a wind tunnel. 
The computation has enormous advantages over the laboratory experiment in the 
precision with which fine-tuning of control parameters can be done, and in the 
accuracy with which initial conditions can be set. The degree to  which a flow field 
can be monitored in a computation is also unrivalled by laboratory realizations. On 
the other hand, long-time records of Eulerian flow data in a complicated flow are not 
easily attainable in a computation due to the limitations mentioned in $ 2 .  The 
strengths and weaknesses of ‘analog and digital wind tunnels ’ complement each 
other in rather remarkable ways ! 

t The origin of the term ‘ (computer)bug ’, which is now widely used to designate situations where 
computer hardware or software fails to operate according to expectations, seems to be a malfunction 
in the Mark I1 vacuum tube computer (c. 1945). A moth had been trapped within causing electrical 
malfunctions. 

2 F L M  173 
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Another forte of numerical experimentation is the ability to  simulate fluid flow 
under conditions that may be difficult to realize in any real laboratory. Two- 
dimensional hydrodynamics, for example, has been largely an analytical and 
computational subject, extending from the clarsical solutions of potential flow theory 
to the subject of two-dimensional turbulence, although geophysical observations 
continually provide important inspiration. It has been difficult to realize such flows 
in the laboratory. Invariably the fluid would discover the third dimension. On the 
computer, however, this is clearly not a problem. There appear to be important 
differences between the evolution of a given flow configuration in two dimensions 
and the evolution of that  same flow configuration when it is allowed to yield to  
three-dimensional instabilities. The theory of isotropic turbulence in two dimensions 
is a case in point (Batchelor 1969; Kraichnan 1967; Leith 1968). But also mixing 
layers and wakes appear to  evolve differently when computations of two-dimensional 
hydrodynamics are compared to laboratory flows with three-dimensional features 
(see Aref 1983 for discussion). 

For many years laboratory realization of two-dimensional hydrodynamics wits 
confined to the case of irrotational flows using the ingenious device named after 
Hele-Shaw (1898). Recently Couder and collaborators (see Couder & Basdevant 
1986) have pursued a clever technique using large soap films that appears to allow 
laboratory visualization of two-dimensional rotational flows. Among other things 
they have realized flow in the wake of a cylinder, and they have observed in the 
breakdown of such a wake the formation of pairs of opposite eddies that propagate 
outward from the wake region. This particular mechanism had been noticed 
previously in computations (Aref & Siggia 1981), in point vortex model solutions (Aref 
1982), and even in essentially isotropic two-dimensional turbulence calculations 
(McWilliams 1984). Since the phenomenology is so different from what is observed 
in laboratory flows with three-dimensional small scales, one can consider the pair 
formation mechanism to be a numerical discovery now confirmed by laboratory 
experiment. 

The ability of a computer code to simulate flow that is difficult to realize in the 
laboratory has as its unfortunate extension the ability of a computational solution 
to be altogether unphysical. The computer is in this respect a forgiving piece of 
equipment. It will willingly solve equations that have no counterpart in the world 
of physical experience. Verification of a computer code is an extremely important 
aspect of the process of scientific computation. Analytical solutions of the equations, 
the more intricate the better, play a very important role here. Precision laboratory 
experiments also may be essential to verify the calculations in regimes where 
analytical solutions are not available. 

Apart from this cross-referencing so pivotal to the success of the scientific method 
(with or without computation), numerical experiments usually have their own 
built-in consistency checks. One varies the grid size, the size of a timestep, the limit 
on accepting an iteration as having converged, etc. Hopefully, the solution eventually 
becomes insensitive to such changes of parameters and can be said to  have been 
checked for convergence. This is not, however, the end of the story. The conscientious 
numerical experimenter must still ascertain that the converged object is indeed the 
solution sought. 

I suggested that the concepts of a soliton and chaotic behaviour in few-degree- 
of-freedom systems were essential paradigms to emerge from numerical experi- 
mentation. As we now know from the analytical characterization of these paradigms 
a partial differential equation displaying solitons corresponds, generally speaking, 
to a Hamiltonian system with a denumerable infinity of independent integrals of 
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the motion. Thus, one would expect integration of a soliton-bearing equation to 
be reasonably forgiving. The perturbations incurred by truncation errors of a dis- 
cretization will be bounded from growing arbitrarily by all the integrals of motion. 
Hence, even the early calculations performed on soliton-bearing systems showed 
up an unusual phenomenon with great clarity. 

For systems with chaotic dynamics the situation is at first glance completely 
different. I n  this case one can give simple examples where arbitrarily small changes 
in initial conditions amplify tremendously in a finite number of integration steps. All 
the aspects of this behaviour that are so appealing when using chaos as a paradigm 
for the transition to turbulence in fluid flows can be turned around to become vicious 
criticisms of any computation that claims to follow a system with chaotic dynamics. 
On a finite computer any initial condition is given to  finite precision. Hence, it 
corresponds in reality to  a small interval of initial conditions. I n  a system where small 
uncertainties in initial state amplify explosively, a small interval can quickly evolve 
into an extremely complicated structure. Yet, unless special programming considera- 
tions are taken, the computer will continue representing this complicated, evolved 
interval as a single point. This interaction between intrinsic stochasticity (chaos) of 
a system of differential equations and the representation of i t  on a digital computer 
raises several vexing questions. 

The general paradox of chaos, viz. that  stochastic behaviour can arise in a system 
that evolves according to completely deterministic laws, has a further twist when the 
computer simulation of such systems is considered. We must first appreciate that  the 
computer, the ultimate deterministic automaton, is capable of producing essentially 
stochastic output. The computer scientist calls the required software, which is readily 
available, a random number generator. We thus have a deterministic procedure on 
a deterministic machine to solve a deterministic problem which leads to  answers that 
in principle and in practice can only be characterized as stochastic. The problem that 
arises is that the chaos intrinsic to the system being computed quickly renders the 
computation itself inaccurate. 

A complete resolution of these difficulties is not yet available, but as a pragmatic 
‘fix’ one can point out that  chaotic regions in phase space are generally open sets, 
and so one can hope that although a given phase space orbit is not being followed 
accurately for all time, whatever is being computed is at least representative of the 
chaotic region. I n  particular, i t  is unlikely that an integrable system would display 
the ‘fuzziness ’ in a Poincark section expected for a non-integrable system. Alterna- 
tively, quantities such as Lyapunov exponents that  demand only short forward time 
integrations can probably be computed reliably. Hence, we are led to conclude - and 
a substantial body of numerical experiments would tend to verify this - that chaotic 
and ultimately turbulent behaviour can be diagnosed computationally, although 
following any particular realization accurately for a long time is a non-trivial task. 

From this vantage point the possibility available to those who study equilibrium 
statistical mechanics of abandoning time integration of differential equations of 
motion (molecular dynamics) in favour of a direct simulation of statistics via the 
Monte Carlo method looks even more appealing. Unfortunately, for chaotic systems 
and for turbulent flows we are limited a t  present to following initial-value 
calculations. 

Maybe the most pernicious example of this influence of system chaos on computing 
ability arises when one considers following the motion of passively advected particles. 
The advection equations for particle motion in a prescribed flow V ( x ,  t ) ,  viz. 

.f = u(x, y, 2 ,  t ) ,  y = D ( X ,  y, 2 ,  t ) ,  i = u,(x, y, 2, t ) ,  (6 a-C) 
2.2 
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where u, v, w are the components of V ,  are generally non-integrable. This has 
important consequences when discussing stirring and mixing (see Aref 1984 or Aref 
& Balachandar 1986 for a lead to the burgeoning literature on chaotic advection 
and/or Lagrangian turbulence). It (again) has apparently devastating consequences 
when discussing the accuracy and reliability of numerical methods involving 
Lagrangian particles. Harlow and collaborators experienced this while pursuing 
computer codes based on a hybrid Eulerian-Lagrangian technique known as the 
Marker-and-Cell (MAC) method. In  one paper Amsden & Harlow (1964) refer to the 
striking ‘relative orderliness of Eulerian representation over Lagrangian. ’ 

This quick synopsis would be incomplete if I did not touch also on that intriguing 
mode of computer usage called computer algebra. As anyone who has done extensive 
analytical calculations will testify there comes a point when the ideas have been 
digested, and the plan of attack on the problem has been decided, where large 
amounts of algebra may be called for. The textbooks will use phrases such as 
‘straightforward but tedious ’ to  cover over the several pages of manipulations that 
may be necessary in getting from one line to  the next. This situation arises frequently 
in perturbation calculations where several terms of some series are required, and 
where the procedures for generating such terms involve iteration of a given set of 
steps. Human intelligence and capacity are such that the rules for doing calculations 
are generally easier to discover than actually doing all the operations manually and 
correctly. It follows that such calculations would be admirably suitable for an 
atomaton if the rules could be programmed. The applications of computer algebra 
to  fluid mechanics have been comprehensively reviewed by Van Dyke (1984). 

Whether the desired output is a single number, an array of numbers or an algebraic 
expression, the key to making an automaton deliver i t  is an  algorithm. This is the 
subject of the next section. 

4. On algorithms 
The issue of the relation of man to machine encompasses a t  one extreme the deep 

analysis of Turing on the concept of computability (see Hopcroft 1984 for a popular 
account), and a t  the other the day to  day considerations of almost anyone who uses 
a computer to derive answers to  problems. Central to all these considerations is the 
concept of an algorithm, the set of rules or procedure by which the problem is to 
be solved. 

At present most of these procedures come from human programmers, and involve 
in an essential way the accumulated analytical insight into the problem. This may 
change. For example, one of the more successful chess playing programs (HITECH) 
incorporates the ability to  store an expandable volume of facts about the game 
including presumably lessons ‘ learnt ’ from previous experiences a t  the board. Maybe 
one day we shall want to ‘teach’ a computer fluid mechanics, in the sense that we 
let i t  try different approaches to  problems, parametrized in some fashion, and assign 
a figure of merit to each solution. 

What we have today in this direction are only embryonic forms such as automatic 
grid generation schemes for finite-element calculation, or packages that make a choice 
between different time integration methods based on characteristics of the equations 
to be solved. For now we perform, a t  best, numerical experiments with our computers, 
i.e. the numbers are experimental, the method of calculation, the algorithm, is under 
external, human control. Convincing numerical results usually do not arise until 
similar outcomes have been produced by different algorithms. (The requirement of 
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having to run the program on different computers has waned with the increased 
reliability of computing equipment.) One day the choice of algorithm and the 
generation of new algorithms may to  a large extent be dons by the automaton. 

The focus on algorithm is not new to the computer era (cf. Euclid’s algorithm). 
Indeed, we have always held in particular reverence the great algorists, such as Euler, 
who seemed to have an innate sense for formulating a calculable problem. There are, 
surprisingly maybe, examples in mathematics where this kind of consideration has 
little role to play. Existence and uniqueness proofs exist that  give hardly a hint of how 
to find the object known to exist and to be unique. These are essentially useless for 
computation. 

With the relative proliferation of powerful computers the motivation for thinking 
algorithmically has increased tremendously. Now one has the hope of actually 
implementing the algorithm in a computer program. Furthermore, with the increased 
emphasis on computation in the sciences, and novel developments in computer 
architecture, we now repeatedly ask questions of a new variety: Does this algorithm 
have a vectorizable implementation? Is the operation count for algorithm A smaller 
than the operation count for algorithm B 2 Can an algorithm for this problem be found 
that can be implemented efficiently on a concurrent processor ? And SO on. 

When confronted with a calculational task originating from an analytical problem 
there are typically several modes of attack. For example, if the task is to compute 
the number n: to a given accuracy, one could work in physical space and draw 
inscribed and circumscribed polygons for a given circle in the manner of Archimedes, 
one could use series expansions, some derived from the theory of Fourier series, or one 
could use considerations from probability theory and perform a Monte Carlo type 
calculation to simulate the outcome of Buffon’s needle problem (Beckmann 1971). 

Similarly in fluid mechanics the solution to the appropriate partial differential 
equation can be found by real space discretization and use of finite-difference or finite- 
element techniques. Or one can use an expansion of the unknown field in Fourier series 
(Gottlieb & Orszag 1977). Sometimes one can use discretizations that derive their 
legitimacy from very different considerations, such as solving the diffusion equation 
by using a random walk (see, for example, the recent paper by Ghoniem & Sherman 
1985), or the recently proposed methods for solving the Navier-Stokes equation using 
‘cellular automata ’ (Frisch, Hasslacher & Pomeau 1986 ; d’Humikres, Lallemand & 
Shimomura 1985; Orszag & Yakhot 1986; Margolus, Toffoli & Vichniac 1986). The 
variety of ways in which any given problem can be cast in a form suitable for 
programming on a digital computer is in principle infinite and in practice very large. 
From this vast collection of possible procedures the computational fluid dynamicist 
must select a few that meet the requirements of the problem. 

Real space discretization is the most intuitive and probably the most common in 
fluid mechanical calculations. It has as its basis a body of analytical results relating 
differences between function values at certain grid points to derivatives of that  
function. For example, using a Taylor series expansion 

F ( z +  h) +F(x -h )  - 2 F ( x )  = F”(x) h2 + O(h4),  (7 )  
where O(h4) signifies terms of order h4 or higher. Dividing throughout by h2 we see 
that the expression { F ( z  + h)  + F(x-  h)  - 2F(x)} /h2 gives the second derivative F”(x) 
up to an error of second order in h. 

Similar considerations apply to differencing in time in an  unsteady calculation. An 
amusing example is provided by the equations describing the point mass pendulum : 

8’=- w 2  sin 8, (8) 
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where w is a constant. Consider discretizing this equation for purposes of time 
integration. Let 19, be the values of 0 a t  uniformly spaced instants in time nAt, 
n = 0 , 1 , 2 ,  . . . . Then to second order in the time interval At 

On+l + On-l - 20, = - (wAt)2 sin 0, 

p = 0 / w ,  

(9) 

according to (7 ) .  We can turn this into a two-dimensional mapping by defining a 

(10) 
momentum-like variable 

and considering the scheme 

(1la) 

( l ib )  

o n + l =  o n  + (wAt)  pn? 

pn+, = Pn- (wAt)  sin On+,. 

This scheme defines a mapping of the ( 0 , p )  ‘phase plane’ onto itself. If i t  is to be 
faithful to the integrable dynamical system from which i t  came, it should display 
solutions the successive iterates of which fall on a curve 

~z - cos 0 = constant, (12) 

corresponding to the conservation of total mechanical energy. The mapping (1 1 ), 
however, is an often treated example from the literature on chaotic dynamics, where 
it is known as the standard map, and it is well known to display breakdown of KAM 
tori and attendant symptoms of chaos as the parameter that  we have written here 
as wAt is increased (cf. Lichtenberg & Lieberman 1983). Note that this is an example 
of chaos in an area-preserving mapping. True to its origins as a non-dissipative system 
the mapping (1  1 )  does conserve phase space area in the sense that 

a(en+l,pn+l)l a(en,pn) = 1 .  (13) 

This connection between chaotic behaviour and numerical methods has been explored 
further by Yamaguti & Oshiki (1981). Other examples of this type exist where a 
mapping displaying chaotic behaviour arises as the result of some prima facie sensible 
discretization made for computational purposes. This is ‘ numerical instability ’ in one 
of its more insidious forms! 

For convenience and brevity consider Burgers’ equation 

Ut + uu, = vu,, (14) 

as a prototype of the field equations that we wish to deal with in fluid mechanics. 
This is a useful test case since we can reduce i t  to  the diffusion equation (which in 
turn can be solved analytically) using the so-called Cole-Hopf transformation 

u = - Sv(l0g q5)z. (15) 

Real space discretization using finite differences on a regular mesh will yield ODEs 
for the field amplitudes a t  the mesh points with quadratic coupling terms. The same 
is true for Fourier series methods, although ingenious manipulations and the fast 
Fourier transform (FFT) algorithm allow substantially reduced operation counts 
relative to  what one would expect by direct inspection of the equations (cf. Orszag 
1972; Gottlieb & Orszag 1977). I n  both cases one incurs a truncation error by 
restricting to a finite number of mesh points or Fourier modes. 

However, Burgers’ equation allows also a set of solutions of a particular form for 
which the PDE can be exactly transcribed to a set of ODEs describing a kind of 
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particle dynamics (Chuudnovsky & Chuudnovsky 1977). The details are as follows : 
if N 

u ( x , t )  = -21) x (x-za( t ) ) - l ,  (16) 
a = 1  

where the complex z,(t), of which there may be any finite number N ,  solve the system 
of ordinary differential equations 

N 
ia = -2v x ( za -zp ) - l ,  

p = 1  

then u ( x ,  t )  gives a complex-valued field solving Burgers’ equation. (Real solutions 
arise when the poles z,(t) occur as complex conjugate pairs.) This kind of solution 
is usually referred to as a ‘pole decomposition’. Similar results hold for the 
Korteweg-de Vries equation (KdV), modified KdV, the Benjamin-Ono equation, the 
Sivashinsky equation and others. 

While the possibility of subjecting a PDE to finite difference or spectral discret- 
izations is always available, the existence of an essentially exact reduction to a finite 
set of ODES is a relatively rarer occurrence, and one that virtually begs for 
exploitation in a numerical method. The most important example of this situation 
may be the two-dimensional Euler equation 

(18) + 11.x(A11.), - %wwx = 0, 
here written for the stream function @, where one has a ‘decomposition’ in terms of 
an assembly of point vortices : if we consider the possibility 

where G [ x ;  x’] is a generalized Green function, discussed in detail by Lin (1943) ,  and 
the r s  are again point vortex circulations, then the ansatz (19) solves Euler’s equation 
(in a ‘weak’ sense, since the vortices themselves are singularities) if the vortex 
coordinates xa, y,  evolve according to the equations 

l N  
where H = X r a T p G [ x a ,  y a ; x p ,  ygI+;z X r ~ g [ x a , ~ a ; ~ a 3 ~ a 1 7  (21)  

l < a < , ? < N  a = l  

with G the Green function from before and 

g[x ; x’] = G[x ; x’] - (2n)-’ log IX - x’l. (22)  

On the infinite plane G [ x ;  x’] is just (27t-l log Ix-x’], g = 0 and H is 

Representing the vortex positions by complex variables, z,, then gives (l) ,  which for 
identical vortices are in fact surprisingly similar to (17) above. 

Point vortices are not as pleasant as the poles of Burgers’ equation since they 
represent singularities within the flow field itself. However, the observations just 
summarized besides being of independent theoretical interest are useful for 
computation. 

The point vortex ‘ decomposition ’ of Euler’s equation in two dimensions has been 
made the basis of a family of numerical procedures usually referred to as vortex 
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methods. The first numerical experiment using such a method was performed by 
Rosenhead (1931) who reported hand calculations in which an assembly of point 
vortices was advanced in time in an attempt to elucidate the mechanics of vortex 
sheet roll-up. The methodology now has a large and growing literature (see the 
reviews by Aref 1983 and Leonard 1980, 1985 where many further references may 
be found). Extensions to three dimensions have met with some success, although the 
appropriate three-dimensional analog of the two-dimensional point vortex is still a 
controversial topic (Novikov 1983 ; Saffman & Meiron 1986). 

Charney (1963), in a paper entitled ‘Numerical experiments in atmospheric 
hydrodynamics, ’ begins : 

Numerical methods are being applied to an increasing variety of problems in atmospheric 
hydrodynamics ... . If the object is to make the best possible forecast of a meteorological 
event, a large number of degrees of freedom in the form of grid values are required to 
approximate the partial differential equations of the continuous flow by a finite set of 
algebraic difference equations. If, on the other hand, the object is to arrive at  physical 
understanding, it is desirable to represent the motion with as few degrees of freedom as 
possible. But merely to decrease the number of grid points is to increase the truncation 
error.. . . The use of functional expansions offers better possibilities. Lorenz . . . has shown 
that the representation in terms of finite series of orthogonal functions can preserve the 
conservation laws.. . even though the computed motions are not strictly those of possible 
physical systems. An alternative approach is to represent the motions by discrete vortex 
elements. Thus the continuous vorticity distribution in two-dimensional flow may be 
approximated by a finite set of parallel rectilinear vortex filaments of infinitesimal 
cross-section and finite strength, whose motion is governed by a set of ordinary differential 
equations .. . . This is analogous to replacing a continuous mass distribution by a set of 
gravitating mass points. It has the virtue that mass, energy, linear and angular momentum 
continue to be conserved and that the motions represented are those of conceivable, though 
idealized, physical systems. It is, in a sense, the dual of Lorenz’s functional representation, 
the Green’s function being the dual of the eigenfunction, or the ‘particle’ the dual of the 
‘wave’. Which representation is the more suitable depends on the nature of the field of 
motion to be approximated. Fields with wave-like properties are more amenable to 
functional representation, whereas those with discontinuities or vortex-like properties are 
more naturally represented by discrete vortices. 

The discovery of chaos in the problem of four point vortices by numerical experiments 
(see Aref 1983, 1985) attests to the validity of Charney’s remarks. The further fact 
that  according to (20) phase space and configuration space coincide for vortices, as 
emphasized by Onsager (1949), promises to  be of profound importance. 

On the algorithmic side an interesting extension of vortex methods has been made 
to certain problems in stratified flows. Consider the flow situation sketched in figure 3, 
where a sharp interface separates two homogeneous but immiscible fluid regions 
individually in potential flow : that  interface can instantaneously be represented as 
a vortex sheet. At the interface the normal component of velocity is continuous. The 
tangential component, however, can have a jump. The latter gives the interface a 
local vortex sheet strength or circulation per unit arclength. Due to stratification, 
circulation is not conserved by Kelvin’s law, but is governed by the circulation 
theorem of Bjerknes, which, depending on the problem, leads to a subsidiary integral 
or integro-differential equation. Examples of this situation include the ‘fingering ’ 
seen in stratified Hele-Shaw flow (also known as the Taylor-Saffman instability), 
the Rayleigh-Taylor problem and several well-established theoretical models of 
waves on interfaces between fluid layers of different densities. The idea that such 
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Interfacial vorticity 

Homogeneous fluid Potential flow 

FIGURE 3. The ‘generic’ sharp interface problem that is amenable to vortex methods. The 
homogeneous fluid regions are assumed to be in potential flow. The normal component of velocity 
is continuous a t  the interface. The tangential component, however, may have a discontinuity. This 
slippage corresponds to interfacial vorticity. 

stratified flow problems are amendable to vortex methods arose well before serious 
implementations were feasible. Birkhoff discussed the Rayleigh-Taylor case in 1954 
(Birkhoff 1954,1962). A lucid recent statement is given by Baker (1982). De Josselin 
de Jong (1959, 1960) showed how to cast the Taylor-Saffman problem in this form 
a few years later. Representative implementations can be found in the work of Baker, 
Meiron & Orszag (1980), Tryggvason & Aref (1983, 1985), Pullin (1982), and 
DeGregoria & Schwartz (1986). A host of other applications in this genre exist, 
including of particular interest to fluid mechanics certain models of wave motion 
(Longuet-Higgins & Cokelet 1976) and finite area vortices (Deem & Zabusky 1978). 

It is interesting to observe the relative ease with which these intrinsically 
Lagrangian methods have been adapted for computation. The Lagrangian repre- 
sentation of fluid mechanical equations is usually considered to be too complicated, 
and most analytical studies work with the equations of motion in the Eulerian form. 
However, once a computer is going to do the calculations, the issue of what is easy 
and what is complicated changes character. If we can find an algorithm for a given 
problem in which we track a number of distinguishable particles, then there may be 
definite advantages to be realized by doing the calculation in this way. For example, 
in stratified flow problems with sharp interfaces i t  is possible to concentrate all the 
degrees of freedom of the calculation on the interface itself, thereby realizing 
considerable gains in resolution for a given expenditure of resources. Furthermore, 
the theoretical formulation implies that  we have a sharp non-diffusing interface and 
this feature is guaranteed by the Lagrangian representation. (For this reason the 
methodology is sometimes referred to as being ‘naturally adaptive ’.) Methods in 
which a field with a sharp jump across a moving interface is represented on an 
Eulerian grid incur a multitude of numerical problems. 

The excerpt from Charney’s (1963) article mentioned an analogy between mass 
points and point vortices. In  either problem the number of operations necessary to 
advance one configuration to the next apparently scales as N 2 ,  where N is the number 
of particles. But this is a crude estimate, and ways can be found to better the 
operation count and, thus, increase the number of point particles that can be 
considered. The ‘vortex-in-cell’ method described by Christiansen (1973) uses a 
hybrid Lagrangian-Eulerian technique to effectively reduce the operation count from 
O(N2)  to O ( N  log, N ) .  This possibility is enormously important since i t  allows one to 
probe statistical flow regimes that would otherwise be inaccessible to computation. 
For example, in the Taylor-Saffman problem of stratified Hele-Shaw flow it has been 



32 H .  Aref 

possible to simulate violently deforming interfaces with a multitude of interacting 
structures (waves, ‘fingers’, and ‘bubbles’) leading to a flow that is essentially 
statistical (Tryggvason & Aref 1983). Indeed, simple scaling laws expected to govern 
such flows can be checked from the computations. I n  this particular example the work 
of several investigators (Tryggvason & Aref 1983, 1985; DeGregoria & Schwartz 
1986; Bensimon 1986) has provided a collection of consistent methods that allow one 
to consider the concept of a ‘digital Hele-Shaw cell’. This is not an immediate 
counterpart of the laboratory version since a number of effects present in real 
experiments (e.g. wetting of the plates, and effects of surface tension due to interface 
curvature in the transverse direction) are not included in the purely two-dimensional 
Hele-Shaw equations. Nevertheless, the dialogue between experimental observation 
and calculations has been extremely useful in elucidating several aspects of the fluid 
mechanics in this case, including the role of viscosity contrast across the interface 
and the instability of fingers in the ‘single fluid case’ for small lateral surface tension. 
For more detail on this topic see the general reports by Robinson (1985a,b), the brief 
review by Aref (1986), the article by Saffman (1986), and the review by Homsy (1987). 

The relation between analytical formulation and computational algorithm is an 
important one. I have concentrated here on topics close to my own interests, but 
corresponding accounts could have been given using examples from other areas in 
fluid mechanics, such as turbulent flow or gas dynamics. 

5. Simulation versus animation 
So far in our discussion we have implicitly assumed that the best computational 

fit to a laboratory experiment or field observation in fluid mechanics will arise by 
subjecting the Navier-Stokes equations (or some subset of these equations) to the 
methods of numerical analysis. This will yield an algorithm and ultimately an 
executable program on some device, and once debates on the relative merits of 
individual techniques have died down, a trustworthy set of solutions will remain. We 
refer to such a set of solutions as a flow simulation. 

This definition is considerably more rigorous than one would use in other areas of 
science. For example, if the objective were to  simulate cell division or plant growth 
on a computer, a program would be written that advanced the process according to 
some set of model equations, entirely in analogy with what we do in CFD. But in the 
biological example the model would be rather more flexible. If the output from a given 
model did not agree with laboratory experiment or field observation, the evolutionary 
biologist would usually be willing to change the model and try the simulation again. 
This mode of work in which the model generating the simulation is tuned to  make 
the outcome agree more closely with observation is rather the inverse of what we are 
used to in CFD. It may be referred to as the hypothetico-deductive method, and its 
objective is to arrive a t  a mathematical model that  will produce a certain kind of 
output deemed desirable on the basis of other considerations. 

There is computational work in fluid mechanics that has a little of this flavour in 
the area of rheology, where the constitutive equation for the medium is unknown, 
and where part of the objective of a numerical experiment is to compare results for 
different constitutive laws in the hope of finding a best fit for some particular fluid. 

But for all cases in fluid mechanics where the governing equations are known, the 
numerical experiment is aimed a t  exploring the solution space of those equations. 
However, if the objective is simply to make a computer produce a flow pattern of 
some realism, there are clearly several possibilities, some of which are considerably 
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simpler than solving discretizations of PDEs ! It is of some interest to  contemplate 
these, in particular since we have noted that the refinement in accuracy and resolution 
necessary for turbulent flow simulations pushes the limits of present computer 
technology. 

To distinguish such other methods of flow generation by computer from the 
simulations (which are based on solving discretizations of the basic differential 
equations of fluid mechanics), I shall refer to them as computer generated flow 
animation. I am interested here in exploring briefly the relationships between 
simulation and animation. 

The early literature on animation is to a large extent wound up with that on 
high-speed photography. Animation in its primitive form arises by passing still 
images, which differ only slightly one from the next, past an observer. Human 
persistence of vision does the rest. High-speed photography produces in essence the 
reverse process : a progression perceived as continuous is artificially broken down into 
a sequence of stills. The well-known pioneering work of Eadweard Muybridge 
consisted in the then painstaking effort of producing a sequence of stills of a 
phenomenon (e.g. a horse in gallop) considered rapid by ordinary human timescales. 
Advances in high-speed cin6 photography now make such sequences routine. 

The computer is an almost ideal instrument for the generation of animation. Long 
sequences of pictures that only differ slightly can be generated with relative ease using 
a base picture and algorithms effecting the simple geometric changes of translation 
and rotation. Such sequences, referred to as computer generated animation, play an 
ever greater role in commercially produced film sequences for entertainment, 
education and advertisement. 

Fluid mechanics has an intriguing relation to this somewhat diffuse area of human 
enterprise. Some phenomena, such as a splash or the motion of a supersonic projectile, 
are within the realm of fluid mechanics, yet they are so rapid that direct visual 
observation is of limited use. The famous images of projectiles with shock waves due 
to Mach from 1886 (see Reichenbach 1983) and the pictures of splashes produced by 
Worthington (1908) and later Edgerton are contributions both to  fluid mechanics 
and to high-speed photography. 

With the computer power of the present one can take a sequence of such pictures 
from an experiment, digitize them and, using simple algorithms, interpolate between 
them. When pasted together the outcome is a computer generated flow animation 
that can have resolution and realism beyond the most ambitious simulations. 

So what has been forfeited 1 If the objective is to provide flow pictures by computer, 
is this not the obvious route rather than negotiating the pitfalls of a numerical 
treatment of PDEs? The answer to such questions is that an image of the flow 
generated on the computer by this method cannot contain any information not 
already present in the original, experimental film record. A piece of computer 
generated animation may obey some simple rules of geometrical scaling, but i t  can 
hardly obey the more subtle type of scaling associated, for example, with Reynolds 
number similarity. The essence of the simulation is that  i t  embodies a t  a basic level 
the dynamical laws of mass, momentum and energy on which fluid mechanics is 
based. The animation does not, as witnessed by the widespread use of animation to 
create extranatural evolution sequences as in fictional cartoons. On the other hand, 
animation of the kind just described does have its place. For example, i t  may be useful 
in some cases to subject flow images generated both by simulation and animation 
to the same processing for comparison purposes. It is interesting to  observe, that 
realistic animation of a fluid dynamical process based on a few images is difficult to 
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achieve. Rotation and translation of rigid objects are easily strung together to 
produce high quality animation. But the essence of fluid motion is change of form, 
and to capture that correctly one needs, in effect, most of the information embodied 
in the differential equations of motion. 

One can now sharpen the argument by asking about the relevance to fluid 
mechanics of the output from turbulence models, for example, or by asking what role 
fractal sets (Mandelbrot 1977), created by models that bear little relation to the 
equations of fluid mechanics, can possibly have to the evolution of fluid motion. The 
output from a turbulence model, by which I mean any of the variety obtained by 
closing the hierarchy of moment equations, can never be a simulation of turbulence 
in the sense I used the term above: regardless of how fine a spatial resolution is used, 
the numerical solution will at best approximate the solution of the turbulence model, 
and the theoretical-analytical problem of showing that the model represents Navier- 
Stokes turbulence remains even after massive computations have been done. And 
what are we to make of fractal sets that look exactly like real clouds, to take an 
example in the realm of fluid flow, yet are generated according to simple iterative 
rules that bear no obvious relation to the governing equations 1 (See in this connection 
also the recent, brief commentary by Kadanoff 1986.) 

The constructive answer to such questions is that computational discoveries in the 
hypothetico-deductive mode are being made. If a high quality calculation using a 
turbulence model shows up a feature that is also seen in experimental measurement, 
then this reflects well on the turbulence model, and the calculation has brought out 
an aspect of the model that one might not have noticed analytically. Similarly, the 
fact that fractal sets appropriately tuned can sometimes produce images that 
correlate well with reality is a computational hint a t  the type of solution we should 
be looking for analytically. I n  fact, there is a tenuous bond from the chaos that can 
be present in the Lagrangian motion of particles advected by fluid flow, that was 
mentioned in $3,  to the omnipresence of fractal sets in chaotic systems, on to the 
emergence of fractal sets in advection-diffusion problems such as those that must 
govern the dynamics of clouds. 

The tradition in CFD has been to pursue the vast set of discretizations of PDEs 
to produce ever finer and faster simulations of fluid flow. This is a noble endeavour 
that should certainly continue. It will remain the most convincing way of producing 
flow solutions for the forseeable future. But it does lack an inherent quality of 
originality. The simulation derives its legitimacy from those instances in which it can 
produce reliable results more quickly or accurately than theory or laboratory 
experiment. Indeed, simulation results exist that  may never be captured by an 
analytical formula derived from first principles. 

However, the computer is capable of so many other things, from solving mode1 
problems to manipulating symbols. Algorithmic developments that are not in the 
vein of discretization followed by simulation - numerical implementations of the 
ideas of the renormalization group (Wilson 1983) being a prime example - should be 
kept constantly in mind. 

6. Outlook 
It is clear that computers will continue to become more powerful. It is also clear 

that computers are now so powerful that  much useful science can be done using them. 
And while there exist computer codes to do many standard tasks, including solving 
the Navier-Stokes equations a t  some level in a variety of circumstances, vast areas 
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in all branches of science have not been subjected to  the computational scrutiny that 
they deserve. 

In  this final section I shall comment on three areas where advances are being made 
and focus on the impact on fluid mechanics. I ask to be excused for basing these 
comments on the somewhat parochial perspective of activities a t  my own institution 
and my own research group, but these are the developments with which I am most 
familiar. 

First of all, there is an initiative underway in the United States to ease access to 
computer resources, in particular to  supercomputer resources on machines such as 
the CRAY-1, Cyber 205, CRAY-XMP and CRAY-2. Workers a t  academic institutions 
have by and large had limited access to  such machines, and this has rightly been 
diagnosed as unproductive. There is a pragmatic effect that  one's vision with regard 
to what constitutes a feasible computation is very much dictated by what computing 
hardware is a t  one's disposal. By making high grade computing available to a broad 
base of academic scientists the hope is that  ambitious problems will be undertaken 
more readily. 

After a nationwide call for proposals the National Science Foundation (NSF) 
awarded high-speed computing centres to  five universities in the USA : Illinois, 
Cornell, Princeton, UC2W and Pittsburgh. The main computer at the San Diego 
Supercomputer Center (SDSC) is a CRAY-XMP 48 with four processors and 
64 Megabytes of memory. Average calculational rates are in the range 5@-100 Mflops 
with peak performance levels at 420 Mflops. 

SDSC has been operational for only a few months. Project grants of computer time 
range from ten CPU hours per year to a few hundred. The initiative to make 
extremely powerful computers available to a broad segment of the academic 
community is so new that no assessments of success or failure can yet be made. One 
can hope, on one hand, that  profound discoveries will occur. One can fear, on the 
other hand, that  resources diverted to computing will hurt advances in theoretical 
analysis, laboratory experiment, and field observation. One can hardly argue with 
the fact that  if any general technological achievement is to influence science in the 
second half of the twentieth century, the revolution in the power of computers is the 
prime candidate. 

The focus on computers and their use in science has rekindled an interest in the 
construction of computers for specific scientific tasks reminiscent of that seen in the 
early years of computing (cf. several articles in Metropolis et d. 1980), but potentially 
of much greater power. Various computationally simple problems, usually with 
discrete states and a simple algorithm (Monte Carlo calculation of spin systems, for 
example), have led to the construction of dedicated computers that perform 
spectacularly on one problem or a small class of problems. Considerable anticipation 
attaches to the issue of whether the Navier-Stokes equation is such a problem when 
viewed from the perspective of cellular automata (see the references given in $4). 

One idea that seems to have a broad range of applicability is that of concurrency, 
i.e. the notion that one can speed up a complicated calculation by apportioning it 
to several processors working on i t  in parallel. For the past three years or so a group 
at  the California Institute of Technology have been developing algorithms and codes 
for scientific computation on a uniquely designed computer employing a parallel 
architecture with up to 64 processors. This machine is modestly called the Cosmic 
Cube. It is reported to  achieve calculational speeds of up to ten times a standard 
mini-computer, the Digital Equipment Corp. (DEC) VAX 11/780 a t  a fraction of the 
cost (Fox & Otto 1984; Seitz 1985). 
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FIGURE 4. Topology of cubes in n dimensions for n = 1 ,  2 ,  3, 4. The 24 = 16 processors in the 
AMETEK ‘hypercube ’ machine mentioned in the text  are interconnected according to  the 
topology of the four-dimensional cube shown. Note the labelling of processors by binary numbers. 
An (n + 1)-cube can be thought of as made up  of two n-cubes connected at corresponding vertices. 

The ‘Cube’ is based on an interesting idea. Instead of having one powerful central 
processing unit (CPU) sequentially accessing shared data and instructions, it has 
several lesser CPUs (nodes) each with their own storage and with capabilities for 
message passing. The nodes are physically interconnected so that the entire arrange- 
ment with n nodes has the topology of the vertices and edges of a cube in 
2n-dimensional space (cf. figure 4). Hence the name ‘(hyperjcube’ for this type of 
machine. 

The Cosmic Cube architecture is currently being put into commercial production 
by several vendors. A configuration that has recently been delivered to my laboratory 
consists of an AMETEK System 14 machine (with just 16 eoncurrent processors) and 
a host mini-computer, in this case a MicroVax I1 from DEC. Both machines are 
housed in boxes that fit a t  the sides of a desk. The two machines use standard 
electrical outlets and require no special ventilation. One can easily extrapolate to the 
day when the powers of both are contained in a single box of smaller size than either 
using VLSI technology. 

I n  operation each of the nodes of the Cube can run its own program using its own 
data and passing messages to other nodes. By clever concurrent use of the processors 
a t  the nodes algorithms can be speeded up by a factor that  is close to the number 
of nodes. Implementations of vortex methods ($4) using this methodology are 
currently underway in our laboratory. This hardwarelsoftware combination is not 
competitive with corresponding codes written for and run on present day super- 
computers. However, the concurrent processor methodology is likely to be imple- 
mented on future generations of supercomputers, and so it is important to explore 
how one can adapt and develop efficient algorithms that take advantage of this new 
feature in computer architecture. 

The final topic that I want to mention is the explosive growth in personal 
computers or workstations. Computing power is today by no means limited to the 
very large mainframe computers. Small portable machines with powers that rival the 
mightiest computers of a few decades ago are today readily available. Although in 
the sciences such computers are heavily used for text processing, program editing, 
post-processing of data, producing graphics, communicating with other (often larger) 
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FIGURE 5.  Basic screen in a demonstration program aimed at  visualizing the streamlines for Stokes 
flow between eccentric rotating cylinders. The user sets parameters on the left and the streamline 
pattern is drawn on the right. The program is based on an analytic solution described by Ballal & 
Rivlin (1976). 

computers, etc., and not much actual calculation is done on them, they do have 
tremendous potential for smaller problems including, in particular, illustrative 
examples of use in instruction. Just  as a laboratory experiment of a few decades ago 
deemed to be particularly valuable frequently reappears as a component of a graduate 
or undergraduate laboratory course, so should computations originally done for 
research purposes be reworked to provide practice in numerical experimentation. 
There is some of this in fluid mechanics (see e.g. Olfe 1986), but not nearly enough. 
The tremendous incentive of wide markets that  attract writers of word processors 
and spreadsheets does not seem to exist for advanced educational software. 

In  figure 5 I show the basic screen in a recent program written by K. Baird, S. Reed 
and myself for the Apple MacintoshTM personal computer. The program is written 
using the Aztec C development system. The problem that we chose to  rework in this 
format arose as part of the recent investigation by Aref & Balachandar (1986) 
mentioned in Q 3. The flow being displayed is the two-dimensional Stokes flow between 
eccentric rotating cylinders (with the familiar Couette flow as a special limiting case). 
The basic screen contains various controls on the left (buttons, scroll bars) for the 
user to select the geometry (radius of inner cylinder, offset of centres) and the angular 
velocities of the two cylinders. By using such controls the programmer is assured 
that the input from the user always falls within required bounds. I n  more conven- 
tional dialogues extensive checking of input must be performed. Once the desired 
parameters have been set the user ‘clicks ’ the start button and the program calculates 
the corresponding set of streamlines displayed on the right. 
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As the reader of the recent detailed analysis of this flow by Ballal & Rivlin (1976) 
will know the steady flow is extremely rich. Separation regions can appear adjacent 
to either cylinder when it is stationary, and internal saddle stagnation points (as 
shown in figure 5 )  appear for both co- and counter-rotating cylinders. Streamline 
patterns can be saved, and saved patterns can be read in and plotted up. 

The student can spend several sessions with this kind of program. Initially one can 
discuss the solution of the standard Couette flow problem. Then the offset can be varied 
and the variety of the solution space explored. The criteria for separation can form 
the topic of another session. And when discussing the internal hyperbolic stagnation 
points, one can pursue the difference between the stagnation point for a cylinder with 
circulation in potential flow theory. In  this Stokes flow example the self-intersections 
of the streamline are not in general a t  right angles because there is vorticity at  the 
stagnation point. 

We are currently developing a few projects of this type for the use of our students. 
The essential challenge to fluid mechanics and its practitioners is to provide ideas 
on what kind of flow situations make good demonstrations given the limitations in 
computing speed of most desktop computers. It is, in a new guise, the familiar query 
of how to provide much insight into fluid mechanics with relatively simple means, 
a quest very much in the spirit of G. I. Taylor. 
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Appendix. Derivation of Tkachenko’s (1964) polynomial relation 
Since all the vortices are stationary, we have (by (1) )  the conditions: 

for each a and each I(.. The primes signify omission of singular terms. By direct 
differentiation of (4a) we also have 

and then 
P ( z )  = P(z)  c ( Z - z a ) - 1 ,  

U 

= P(z) e’ (z-za)- l (z-zB)- ’  
a ,  P 
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Now, when a and /3 are different, we can write 

(A 5 )  ( 2  - z a )  -1(z - za) -1 = { ( 2  - z a )  -1 - ( 2  - za) -I} (za - z/j) -1. 

Thus, 

Similarly, Q"(2) P(z) = ~ P ( z )  Q ( z )  X' (z-CP)-l(Cfl-CA)-l. (A 7 )  
P> A 

From (A 3) and the analogous expression for &'(z)  we get 

~ P ' ( z ) & ' ( z )  = ~ P ( z )  Q ( z )  ( Z - Z ~ ) - ' ( Z - ~ ~ ) - ' ,  

a, P 

or, using, a transcription similar to (A 5 )  

Comparing (A 6),  (A 7 )  and (A 8), and using the relations (A 1 )  and (A 2) ,  immediately 
gives (5) .  
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